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Hamiltonian reformulation and pairing of Lyapunov exponents for Nosé-Hoover dynamics
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School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 19 September 1996!

The Nose´ Hamiltonian is adapted, leading to a derivation of the Nose´-Hoover equations of motion which
does not involve time transformations, and in which the degree of freedom corresponding to the external
reservoir is treated on the same footing as those of the rest of the system. In this form it is possible to prove
the conjugate pairing rule for Lyapunov exponents of this system.@S1063-651X~97!07202-4#

PACS number~s!: 05.45.1b, 05.70.Ln, 05.20.Gg
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I. INTRODUCTION

The Nose´ Hamiltonian@1,2#

HN~q,s;p,ps ;l!5(
i51

N upi u2

2mis
2 1w~q!1

ps
2

2Q
1gkTlns

~1!

is used to model a system ofN particles interacting with a
thermal reservoir at temperatureT, represented by the coor
dinates with its conjugate momentumps . g is a constant
which depends on the number of degrees of freedom of
system. If we interpret the time variablel as a nonphysica
parameter, with physical time intervals defined
dt5dl/s and physical momentumpi5dqi /dt5pi /s, a uni-
form ~microcanonical! probability measure on the ful
(q,p,s,ps) phase space reduces to a canonical probab
measure on the system variables (q,p), as long as
g53N11. Thus a molecular dynamics simulation may
used to model canonical, as well as microcanonical
sembles, as long as the extended system dynamics is erg
Refer to Ref.@3# for a more complete discussion and revie
Numerical results suggest that the ergodic assumption
be reasonable for all but the very smallest systems@4#. It is
possible to make a number of modifications of the time a
momentum variables inHN to obtain other dynamical sys
tems which generate the canonical ensemble@5,6#.

Hoover @7# pointed out that the equations in terms of t
physical variables (q,p,t) and z5ps /Q take on a particu-
larly simple form:

q̇i5pi /mi , ~2!

ṗi52“ iw2zpi , ~3!

ż5
1

Q S (
i51

N upu i
2

mi
2gkTD , ~4!

ṡ5zs. ~5!

Note that the first three equations form a closed set;s is now
redundant. In this form, it is apparent thatz acts as a kind of
thermostat acting on the kinetic energy of theN-particle sys-
tem. ż is proportional to the difference between the kine
energy andgkT/2, so that when the kinetic energy rise
551063-651X/97/55~3!/3693~4!/$10.00
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above this value,z increases, raising the damping term in t

equation forṗ, and thus reducing the kinetic energy. In th
Hoover representation the equilibrium distribution
changed because of the time scaling, however, the cano
distribution in the system variables is recovered by sett
g53N.

The real utility of this approach, however, is to noneq
librium systems. In a nonequilibrium simulation in whic
energy is being pumped through the system such a ther
stat permits the system to approach a steady state while
maining homogeneous; there are alternative approache
volving boundaries which do not share this property@8–10#.
Another important thermostatting method based on Gau
principle of least constraint@11# usesz as an explicit func-
tion of the coordinates rather than a variable in its own rig
@12#. The Nose´-Hoover and Gaussian thermostats give t
same averages and time correlation functions in the ther
dynamic limit @13#. The important point to note here is tha
any representation of a nonequilibrium steady state m
contain some reference to an external heat reservoir. A p
sible advantage of the Nose´-Hoover scheme over the Gaus
ian approach is that this reservoir is explicitly included a
separate degree of freedom, so that it may be treated
similar footing as the rest of the system. Recently a num
of modifications and extensions to the Nose´-Hoover method
have been proposed@14–17#.

Lyapunov exponents~defined in Sec. III! are important in
the study of nonequilibrium systems, giving information o
the chaotic instability, and providing an important link b
tween the microscopic and macroscopic properties, since
sum of the exponents gives the average rate of phase s
expansion, which can then be related to entropy product
and hence transport coefficients. The conjugate pairing
for Lyapunov exponents is the property that there is a c
stantC such that for every exponentl, C2l is also an
exponent, with the possible exception of one or two exp
nents which are fixed to be zero by symmetry consideratio
It was first discussed in Refs.@12,18#. The conjugate pairing
rule permits the sum of the exponents to be calculated fr
the largest and smallest, which are the easiest to eval
numerically. Hamiltonian systems obey conjugate pair
with C50, that is, the exponents come in6 pairs @19#.
Systems with a constant damping factor pair withC propor-
tional to this factor@20#. Recently the conjugate pairing rul
has been shown to hold for systems containing a Gaus
3693 © 1997 The American Physical Society
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thermostat@21#, whereC is minus the average value of th
thermostatting multipliera ~analogous toz here!. In this
case there are two zero exponents which do not pair, wh
arise from the time translation symmetry, and the conser
kinetic energy.

Note that the Lyapunov exponents depend on the v
ables used to define the phase space if the equations rel
different coordinate systems involve exponential functions
time. This means that, although it is trivial to prove that t
Lyapunov exponents obtained using the original Nose´ vari-
ables pair to zero, because the equations of motion are
rived from a Hamiltonian, it is much harder to make sta
ments about the Hoover variables, particularly since
different time variable is used. Here the total phase sp
contraction, which is given by minus the sum of th
Lyapunov exponents, is proportional to the average ofz,
which is nonzero for a nonequilibrium steady state. Since
sum of the exponents is less than zero, it is clear that
exponents are quite different to the Nose´ values, for which
the sum is trivially zero.

Section II of this paper shows how to write the No´
Hamiltonian in a form which treats the system and reserv
variables on equal footing, leading to a proof of the con
gate pairing rule in Sec. III , along the lines of the proof
Ref. @21#.

II. UNIFIED HAMILTONIAN FORMALISM

In the form given by Nose´ @Eq. ~1!#, the reservoir variable
s is treated quite differently than the other coordinates in t
the system kinetic term is divided bys2 whereas the reser
voir kinetic term is not. In addition, the timel corresponding
to the Hamiltonian does not correspond to physical tim
HereHN is transformed to alleviate both of these deficie
cies.

The unified form of the Hamiltonian is obtained by tran
forming to a new coordinates5 lns. This type of transfor-
mation is described in Sec. 9.2 of Ref.@22#, and uses a gen
erating function of the form

F2~q,s;p,ps ;l!5(
i51

N

qi•pi1pslns, ~6!

leading to a new momentumps5sps , and transformed
Hamiltonian

HT~q,s;p,ps ;l!5
e22s

2 S (
i51

N upi u2

mi
1
ps
2

Q D 1w~q!1gkTs.

~7!

Note that the form of the potential is also simpler in th
representation. The masses may also be scaled out: Con
3N11 dimensional vectors X5(qiAmi ,sAQ) and
P5(pi /Ami ,ps /AQ), and write F(X)52s and
f(X)5w(q)1gkTs. The Hamiltonian may then be writte
in a unified form as

HU~X;P;l!5
uPu2

2
e2F~X!1f~X!. ~8!
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The final transformation which eliminates the need for
unphysical time variable follows similarly to the Hami
tonian for the Gaussian thermostat@23#. First add a constan
to f so that the initial~and hence at all times! value ofHU is
zero. It is easily verified that multiplying a zero Hamiltonia
by an arbitrary function scales the time, but has no ot
effect on the equations of motion. Thus the final form of t
Hamiltonian is

HF~X;P;t !5
uPu2

2
eF~X!1f~X!e2F~X!. ~9!

This transformation is equivalent to multiplyingHN in Eq.
~1! by s, which is a particularly simple method of generatin
Eqs.~2!–~5! without the use of unphysical time variables.

It is also convenient to introduce a few more 3N11 di-
mensional vectors,

V5PeF, ~10!

F52“F, ~11!

f52“f, ~12!

in terms of which the conditionHF50 becomes

uVu2

2
1f50 , ~13!

and Hamilton’s equations of motion reduce to

Ẋ5V, ~14!

V̇5uVu2F2F•VV1f. ~15!

As an example, let us consider the Nose´-Hoover oscillator
of Ref. @4#. For a single particle in a one dimensional ha
monic oscillator potential,w5mv2q2/2. Then the Hamil-
tonian becomes

HF~q,s;p,ps ;t !5@p2/~2m!1ps
2/~2Q!#e2s

1~mv2q2/21gkTs!es, ~16!

and the vectors we introduced above are

X5~qAm,AQlns!, ~17!

V5~p/~sAm!,ps /~sAQ!5~p/Am,AQz!, ~18!

F5~0,1/AQ!, ~19!

f5~2v2qAm,2gkT/AQ!. ~20!

In this form it is straightforward to show that Eqs.~14! and
~15! are equivalent to Hoover’s form of the equations, E
~2!–~5!. The decoupling of thes ~or s) equation occurs be
causeF and f are independent ofs.

III. CONJUGATE PAIRING

The equations of motion given previously are now in
form suitable for a proof of the conjugate pairing rule f
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Lyapunov exponents. Note that the coordinates used are
same ~apart from constants related to the masses! as the
Nosé-Hoover thermostat, except thats is replaced bys. The
components ofV are proportional to the physical momentu
p and z. Since the equations do not depend ons, the
Lyapunov exponents obtained contain one extra zero ex
nent, but otherwise are the same as the other 6N11 equa-
tions considered separately.

The argument given here closely follows Ref.@21#, so the
presentation will be correspondingly brief. It is convenient
groupX andV together to form a pointG in 6N12 dimen-
sional phase space. Time dependent matricesT and L are
defined, giving the infinitesimal and finite evolution of line
perturbationsdG as follows:

dĠ~ t !5T~ t !dG~ t !, ~21!

dG~ t !5L~ t !dG~0!. ~22!

The Lyapunov exponents are defined as the logarithms o
eigenvalues ofL, where

L5 lim
t→`

@LT~ t !L~ t !#1/~2t !. ~23!

Two of the Lyapunov exponents are zero due to the f
that perturbations along the flow simply add a constant to
time, and the conservation of the value of the Hamiltoni
Eq. ~13!, which is the total~scaled! energy of the system an
reservoir. Of course the energy of the system alone is
conserved, as it maps out a canonical distribution.

The conjugate pairing clearly does not include these
exponents, so perturbations along the flow and those w
alter the value of the Hamiltonian must be eliminated bef
the pairing is apparent. This is achieved by consideringN
perturbations, none of which are along the flow or alter
total energy. They are measured with respect to a basis
6N dimensional subspace which rotates with the trajector
order to enforce these properties. In particular,dX is always
perpendicular toV ~in 3N11 dimensional coordinates!, and
dV has a component parallel toV which is fixed by energy
conservation. As the perturbed trajectory evolves, it will
ways have the same conserved energy, butdX may not re-
main perpendicular toV. The perturbed trajectory will, how
ever, cross the 6N dimensional space at some timet8
different to t, so the above conditions may be enforced
allowing the perturbed trajectory to evolve at a rate differ
to the original. The Lyapunov exponents obtained using
approach are the same as for the full 6N12 dimensional
space, with the exception of the two zeros. These issues
discussed in more detail in Ref.@21#, the only difference
being that here the phase space is not compact. The a
ments follow through exactly the same, however, if ergod
ity is assumed, as it is when deriving the canonical distri
tion ~Sec. I!.

The first step is to choose an orthonormal basis
3N11 dimensional space,$e0 ,ei%, with i ranging from 1 to
3N, as it will henceforth.e0 is parallel toV,

V5Ve0 , ~24!
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with V5uVu and all theei are perpendicular toV. This basis
is used for bothX andV subspaces. The equations of motio
~14! and ~15! determine the time evolution ofV ande0,

V̇5f•e0 , ~25!

ė05(
i

~VF1V21f!•eiei . ~26!

The equations of motion for the other basis vectors are so
what arbitrary, but the natural choice which preserves
orthonormal character is parallel transport along the tra
tory,

ėi52~VF1V21f!•eie0 . ~27!

The perturbed trajectory subject to the above conditio
then becomes

X85X1(
i

dXiei , ~28!

V85V1V21(
i
f•eidXi1(

i
dViei , ~29!

with equations of motion

d

dt8
X85V8, ~30!

d

dt8
V85uV8u2F82F8•V8V81f8. ~31!

Here,F8 andf8 are the values at the perturbed positions, t
is,

F85F1(
i

dXi“ iF, ~32!

f85f1(
i

dXi“ i f. ~33!

Substituting Eqs.~28!, ~29!, ~32!, and~33! into Eqs.~30!
and ~31!, ignoring quadratic perturbations, simplifying wit
the help of Eqs.~14!, ~15!, and ~25!–~27!, and taking com-
ponents in the directions ofe0 and theei leads to 6N12
equations. One of these is not independent of the others,
to energy conservation. One relatest8 andt, and the remain-
ing 6N determine the evolution of the perturbations:

dt

dt8
511(

i
~F12V22f!•eidXi , ~34!

dẊi5dVi , ~35!

dV̇i5(
j

dXjej•~V
2
“F1“f2V2FF23V22ff2Ff2fF!•ei

2VF•e0dVi . ~36!
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Note thatVF•e0 is simply z, and the terms containing gra
dients of forces are symmetric, sinceF and f are derived
from potentials. From these equations, the infinitesimal e
lution matrixT for the restricted 6N dimensional space ma
be read off as

T5S 0 I

M 2zI D , ~37!

where each of the elements are 3N33N submatrices.M is
symmetric becauseF and f have been derived from a poten
tial, and 0 andI are the zero and unit matrices, respective
T satisfies the equation

TTJ1JT52zJ, ~38!

whereJ is given by

J5S 0 I

2I 0D . ~39!

From this point the analysis is exactly the same as R
@21#. Equation ~38! leads to similar relations forL and
-

-

.

f.

LTL, and hence the eigenvalues ofL. The end result is tha
for each exponentl, C2l is also an exponent, with

C52^z& t , ~40!

that is, minus the time average ofz. Thus the conjugate
pairing rule holds in the (q,s,p,z) variables, with the excep
tion of the two zero exponents. As noted before, none of
equations of motion depend ons, so that, omitting thes
equation gives the same exponents~which pair, as shown
above!, with only one zero exponent.

Conjugate pairing has now been shown for Gaussian
Nosé-Hoover thermostats which act on the kinetic energ
Numerical simulations@24# suggest that the conjugate pai
ing rule holds also for Gaussian thermostats which keep
internal energy~rather than the kinetic energy! constant.
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