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Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics
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The NoseHamiltonian is adapted, leading to a derivation of the NHsever equations of motion which
does not involve time transformations, and in which the degree of freedom corresponding to the external
reservoir is treated on the same footing as those of the rest of the system. In this form it is possible to prove
the conjugate pairing rule for Lyapunov exponents of this sysi&h063-651X97)07202-4

PACS numbes): 05.45+b, 05.70.Ln, 05.20.Gg

[. INTRODUCTION above this value; increases, raising the damping term in the
The NoseHamiltonian[1,2] equation forp, and thus reducing the kinetic energy. In the
Hoover representation the equilibrium distribution is
N |2 5 changed because of the time scaling, however, the canonical
Hn(a,S; m,psiN) = 2, om e+ ﬁﬂLnglnS distribution in the system variables is recovered by setting
i=1 i (1) g= 3N.

The real utility of this approach, however, is to nonequi-
is used to model a system of particles interacting with a librium systems. In a nonequilibrium simulation in which
thermal reservoir at temperatufe represented by the coor- energy is being pumped through the system such a thermo-
dinates with its conjugate momenturp,. g is a constant Stat permits the system to approach a steady state while re-
which depends on the number of degrees of freedom of thgnaining homogeneous; there are alternative approaches in-
system. If we interpret the time variableas a nonphysical volving boundaries which do not share this propggy 10].
parameter, with physical time intervals defined byAnother important thermostatting method based on Gauss’s
dt=d\/s and physical momentum=dg; /dt=; /s, auni-  principle of least constrairftLl1] uses as an explicit func-
form (microcanonicadl probability measure on the full tion of the coordinates rather than a variable in its own right
(9,7,s,ps) phase space reduces to a canonical probability12]. The NoseHoover and Gaussian thermostats give the
measure on the system variableg,[), as long as same averages and time correlation functions in the thermo-
g=3N+1. Thus a molecular dynamics simulation may bedynamic limit[13]. The important point to note here is that
used to model canonical, as well as microcanonical enany representation of a nonequilibrium steady state must
sembles, as long as the extended system dynamics is ergodigntain some reference to an external heat reservoir. A pos-
Refer tp Ref[3] for a more complete dlscu§S|on and review. siple advantage of the Nogtoover scheme over the Gauss-
Numerical results suggest that the ergodic assumption ma¥n approach is that this reservoir is explicitly included as a
be reasonable for all but the very smallest systediisitis  separate degree of freedom, so that it may be treated on a
possible to make a number of modifications of the time andimijar footing as the rest of the system. Recently a number

momentum variables iitfy to obtain other dynamical sys-  of modifications and extensions to the Ndseover method
tems which generate the canonical ensemb)é]. have been proposdd4—17.

quver[?J pointed out that the equations in terms pf the Lyapunov exponent&efined in Sec. I)l are important in
physical variablesd,p,t) and {=ps/Q take on a particu-  the study of nonequilibrium systems, giving information on
larly simple form: the chaotic instability, and providing an important link be-
. tween the microscopic and macroscopic properties, since the

ai=pi/m;, 2 sum of the exponents gives the average rate of phase space
_ expansion, which can then be related to entropy production,
pi=—Vie—{pi, 3 and hence transport coefficients. The conjugate pairing rule

for Lyapunov exponents is the property that there is a con-
stantC such that for every exponemt, C—\ is also an
, (4) exponent, with the possible exception of one or two expo-
nents which are fixed to be zero by symmetry considerations.
: It was first discussed in RefE12,18. The conjugate pairing
s={s. 5 rule permits the sum of the exponents to be calculated from
the largest and smallest, which are the easiest to evaluate
Note that the first three equationS form a closed Sﬂ;now numerica”y_ Ham”tonian systems obey Conjugate pairing
redundant. In this form, it is apparent thatcts as a kind of \ith c=0, that is, the exponents come in pairs [19].
thermostat acting on the kinetic enel’gy of fhépal’ticle SyS- Systems W|th a constant damp|ng factor pair meropor_
tem. ¢ is proportional to the difference between the kinetictional to this factof20]. Recently the conjugate pairing rule
energy andgkT/2, so that when the kinetic energy rises has been shown to hold for systems containing a Gaussian
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thermostaf{21], whereC is minus the average value of the  The final transformation which eliminates the need for an
thermostatting multipliera (analogous toZ here. In this  unphysical time variable follows similarly to the Hamil-
case there are two zero exponents which do not pair, whictonian for the Gaussian thermosfag]. First add a constant
arise from the time translation symmetry, and the conservetb ¢ so that the initialand hence at all timgwvalue ofH is
kinetic energy. zero. It is easily verified that multiplying a zero Hamiltonian
Note that the Lyapunov exponents depend on the variby an arbitrary function scales the time, but has no other
ables used to define the phase space if the equations relatieffect on the equations of motion. Thus the final form of the
different coordinate systems involve exponential functions oHamiltonian is
time. This means that, although it is trivial to prove that the
Lyapunov exponents obtained using the original Neas-
ables pair to zero, because the equations of motion are de-
rived from a Hamiltonian, it is much harder to make state-
ments about the Hoover variables, particularly since arhis transformation is equivalent to multiplyingy in Eq.
different time variable is used. Here the total phase spac€l) by s, which is a particularly simple method of generating
contraction, which is given by minus the sum of the Egs.(2)—(5) without the use of unphysical time variables.
Lyapunov exponents, is proportional to the averagef of It is also convenient to introduce a few mor&l 3 1 di-
which is nonzero for a nonequilibrium steady state. Since th&nensional vectors,
sum of the exponents is less than zero, it is clear that the

P 2
HF(X;P;t)z%e‘I’(XM H(X)e PX), 9

> . — pa®
exponents are quite different to the Nosaues, for which V=Ppe", (10)
the sum is trivially zero.

Section Il of this paper shows how to write the Nose F=-Vo, (1)

Hamiltonian in a form which treats the system and reservoir

variables on equal footing, leading to a proof of the conju- f=-Ve¢, (12)

gRaetf[gellirmg rule in Sec. lll , along the lines of the proof in in terms of which the conditioi-=0 becomes
V2
II. UNIFIED HAMILTONIAN FORMALISM T+ $=0, (13

In the form given by Nos€Eq. (1)], the reservoir variable and Hamilton’s equations of motion reduce to
s is treated quite differently than the other coordinates in that

the system kinetic term is divided ksf whereas the reser- X=V, (14)
voir kinetic term is not. In addition, the time corresponding

to the Hamiltonian does not correspond to physical time. V=|V|2F—F-Vv+f. (15)
Here Hy, is transformed to alleviate both of these deficien-

cies. As an example, let us consider the Ndseover oscillator

The unified form of the Hamiltonian is obtained by trans- of Ref. [4] For a Sing|e partide in a one dimensional har-
forming to a new coordinate =Ins. This type of transfor- monic oscillator potentialg=mw?g%/2. Then the Hamil-
mation is described in Sec. 9.2 of RE22], and uses a gen- tonian becomes
erating function of the form

He(d,05m,p, ;) =[ 72/ (2m) +p}/(2Q)Je™*
N

F,(Q,s; w,p,,;)\)zizl qi- m+p,ins, (6) +(Mo?g?/2+gkTo)e’, (16)

and the vectors we introduced above are
E:rtdr::r%ntizna new momentunp,=sps, and transformed X— (q/m,QIns), a7
e (N m2 p2 V=(al(sym).p,/(sQ)=(p/Vm,VQe), (18
H(q,0;m,p,:0) = 3 (21T+6 +¢(q)+gkTo. F=(0.140). 19
" f=(—w’qVm,—gkT/\Q). (20

Note that the form of the potential is also simpler in this . o ]

representation. The masses may also be scaled out: Constrifgithis form it is straightforward to show that Eqd.4) and
3N+1 dimensional vectors X=(gJm;,oyQ) and (15) are equivalent to Hoover's form of the equations, Egs.
P=(ﬂi/ﬁ,p0/\/6), and writt ®(X)=—o and (2)—(5). The deco_upling of the (or o) equation occurs be-
#(X)= () + gkTo. The Hamiltonian may then be written CauseF andf are independent od.

in a unified form as
I1l. CONJUGATE PAIRING

|PI?

Hy(X;Pi\) = Tezq>(x)+¢(x)_ ®) The equations of motion given previously are now in a

form suitable for a proof of the conjugate pairing rule for
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Lyapunov exponents. Note that the coordinates used are thveith V=|V| and all theg are perpendicular t¥'. This basis

same (apart from constants related to the magsas the s used for bottX andV subspaces. The equations of motion

NoseHoover thermostat, except thais replaced byr. The  (14) and(15) determine the time evolution &f ande,,

components o¥/ are proportional to the physical momentum

p and {. Since the equations do not depend an the V=f.g, (25

Lyapunov exponents obtained contain one extra zero expo-

nent, but otherwise are the same as the othé#& equa- )

tions considered separately. &=2> (VF+V 7). ge. (26)
The argument given here closely follows Rgfl], so the '

presentation will be correspondingly brief. It is convenient tothe gquations of motion for the other basis vectors are some-
groupX andV together to form a point in 6N+2 dimen-  \hat arhitrary, but the natural choice which preserves the

sional phase space. Time dependent maticendL are  grnonormal character is parallel transport along the trajec-
defined, giving the infinitesimal and finite evolution of linear tory

perturbationssT” as follows:

_ e=—(VF+V 'f)-ae. (27
SI'(H)=T(t)oI'(t), (21
The perturbed trajectory subject to the above conditions
ST (t)=L(t)8T'(0). (29  then becomes
The Lyapunov exponents are defined as the logarithms of the X=X+ E oXie, (28
I

eigenvalues of\, where

A=lim[LT(t)L(t)]H?Y. (23 V'=V+VIY f.gX+ >, dVie, (29

t—oo

Two of the Lyapunov exponents are zero due to the factith equations of motion
that perturbations along the flow simply add a constant to the
time, and the conservation of the value of the Hamiltonian, ix’:V’ (30)
Eq. (13), which is the totalscaled energy of the system and dt’ '
reservoir. Of course the energy of the system alone is not
conserved, as it maps out a canonical distribution. , 2t er o e

The conjugate pairing clearly does not include these two WV =[VI[*F =F VIV A 3D
exponents, so perturbations along the flow and those which
alter the value of the Hamiltonian must be eliminated bEfOI'q-|ere,F’ andf’ are the values at the perturbed positions’ that
the pairing is apparent. This is achieved by consideriNg 6 s,
perturbations, none of which are along the flow or alter the
total energy. They are measured with respect to a basis in a
6N dimensional subspace which rotates with the trajectory in Fr=F+ 2. OXiViF, (32
order to enforce these properties. In particul®, is always
perpendicular td/ (in 3N+ 1 dimensional coordinatgsand
S8V has a component parallel ¥ which is fixed by energy f'=f+ >, 5XV,f. (33
conservation. As the perturbed trajectory evolves, it will al- [
ways have the same conserved energy, &tmay not re-

i icul .Th i ill, how-
main perpendicular /. The perturbed trajectory will, how and (31), ignoring quadratic perturbations, simplifying with

ever, cross the M dimensional space at some tinié )
. - the help of Egs(14), (15), and(25—(27), and taking com-
different tot, so the above conditions may be enforced by onents in the directions o, and thee leads to &I+ 2

allowing the perturbed trajectory to evolve at a rate different’ . - .
to the original. The Lyapunov exponents obtained using thigquations. One of th_ese(ljs not ||ndéepegdent gf ;[]he othe_rs, due
approach are the same as for the fuN-62 dimensional to energy conservation. One refatesandt, and the remain-

space, with the exception of the two zeros. These issues atdd BN determine the evolution of the perturbations:

discussed in more detail in Ref21], the only difference

Substituting Eqs(28), (29), (32), and(33) into Egs.(30)

being that here the phase space is not compact. The argu- d_t,:1+2 (F+2V~2f).e8X;, (34)
ments follow through exactly the same, however, if ergodic- dt i

ity is assumed, as it is when deriving the canonical distribu-

tion (Sec. ). SXi= 68V, , (35)

The first step is to choose an orthonormal basis in
3N+1 dimensional spacégy,g}, with i ranging from 1 to , 5 ) 72
3N, as it will henceforthe, is parallel toV, 5Vi=§j: oXig- (VVF+VI—VFF-3V “ff—Ff—1F)-¢g

V=Ve,, (24) —VF-e,0V,. (36)
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Note thatVF- e, is simply £, and the terms containing gra- LTL, and hence the eigenvalues &f The end result is that
dients of forces are symmetric, sin€eandf are derived for each exponenk, C—\ is also an exponent, with

from potentials. From these equations, the infinitesimal evo-

lution matrix T for the restricted Bl dimensional space may C=—({x, (40)
be read off as

0 | that is, minus the time average ¢f Thus the conjugate
T:( ) , (37) pairing rule holds in thed, o,p, ) variables, with the excep-
M =l tion of the two zero exponents. As noted before, none of the

equations of motion depend an, so that, omitting ther
equation gives the same exponefgich pair, as shown
above, with only one zero exponent.

Conjugate pairing has now been shown for Gaussian and
NoseHoover thermostats which act on the kinetic energy.

where each of the elements arbl 8 3N submatricesM is
symmetric becausg andf have been derived from a poten-
tial, and 0 and are the zero and unit matrices, respectively.
T satisfies the equation

TTI+3T=—¢J, 38 !\Iumerical simulation$24] suggest that the conju_gate pair-
¢ (38) ing rule holds also for Gaussian thermostats which keep the
wherelJ is given by internal energyrather than the kinetic energgonstant.
0o |
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